Quanterra and Antelope: an ongoing relationship in research and development for the future

May, 2008 Antelope User Group Meeting ZAMG, Vienna

- BRTT started working with Quanterra dataloggers in 1997 with the then new Q730 MSHEAR systems for a project in Saudi Arabia
- First implementation within Antelope used COMSERV with the program **cs2orb**
- By inspecting the COMSERV source code, we were able to infer the raw telemetry protocols and formats that were used to talk to the dataloggers directly
- We discovered that although the data samples were represented as MSEED Steim compressed data blocks, the normal MSEED headers were missing in the raw telemetry transmissions
- Instead the telemetry blocks contained the information needed to formulate MSEED headers and also some other useful "out of band" information relating to status and state of health

- This led us in the direction of writing our own software to talk directly to the dataloggers without using COMSERV which ultimately produced **qt2orb**
- Why did BRTT do this?
 - We had a vision of a centralized network acquisition and control system that had <u>timely</u> access to all data and state of health information across the entire network
 - We also wanted a fundamental system design that would support early warning
 - The existing MSHEAR-COMSERV view into the data was a completely SEED-centric view
 - Although SEED is a good way of representing data for exchange and archiving, it is not a particularly good representation of data and state of health information in situations that require very low latencies
 - We wanted a view into the "Q330" that was inside of every MSHEAR system

Design of Antelope software module **q3302orb**

- First CVS check-in February, 2001 well before Q330 was released to the public
- Initial testing done with a Q330 simulator
- About 150 revisions to the main program
- Close collaboration between BRTT and Quanterra continuing to present
- Done entirely with internal BRTT funding
 means BRTT has a high opinion of the Q330 datalogger
- Strong commitment by BRTT to support Q330 product line in the future

Requirements for q3302orb

- One instance of **q3302orb** to acquire data from many Q330 dataloggers
- Acquire and output ALL information from the Q330 dataloggers including the copious status information
- Fully featured support of ALL Q330 acquisition capabilities including very low data latencies (one second packets), base96 encoding, serial port acquisition of high resolution pressure waveforms from Paroscientific sensors and Q330 capabilities for sensor calibration
- Internal generation of additional status information relating to receiver-end communications
- All waveforms, datalogger status, command responses and internally generated log messages output as ORB packets
- Configuration accomplished using standard Antelope mechanisms (i.e. command line arguments, databases and parameter files)
- Dynamic commands to **q3302orb** and Q330 dataloggers using command ORB packets generated by the program **dlcmd**
- Robust link disconnect/reconnect and q3302orb stop/restart so no data is lost or repeated
- Ability to arbitrarily define ORB packet channel multiplexing and time durations independent of Q330 waveform data streams
- Ability to represent certain status information as waveforms and/or ASCII log messages and/or pf representations (used by **dlmon**)
- Completely compatible with other Q330 acquisition and control agents such as willard
- High performance, high MTF, minimum resource impact

What **q3302orb** is not designed to do

- Resample data waveforms (i.e. V.. Channels)
- Any other data waveform processing (except for LCQ channel)
- Detections
- Waveform segmentation
- Conversion to SEED
- Data archiving
- Lots of things done by the BALER
- Lots of things done by MSHEAR systems
- Meant to be compact high performance receiverside software analog to Q330

Sensor calibration using Quanterra Q330 dataloggers with *Antelope*

May, 2008 Antelope User Group Meeting ZAMG, Vienna

Q330 sensor calibration capabilities

- High resolution DAC with precise timing
- A variety of waveforms including step function, sine, random telegraph, white noise, red noise (white noise produces best results over entire frequency band)
- Ability to monitor DAC output simultaneously with sensor output
- Special data "markers" inserted into output data stream that clearly identify calibrations regardless of the command source

Sensor calibration strategy using Antelope and Q330 dataloggers

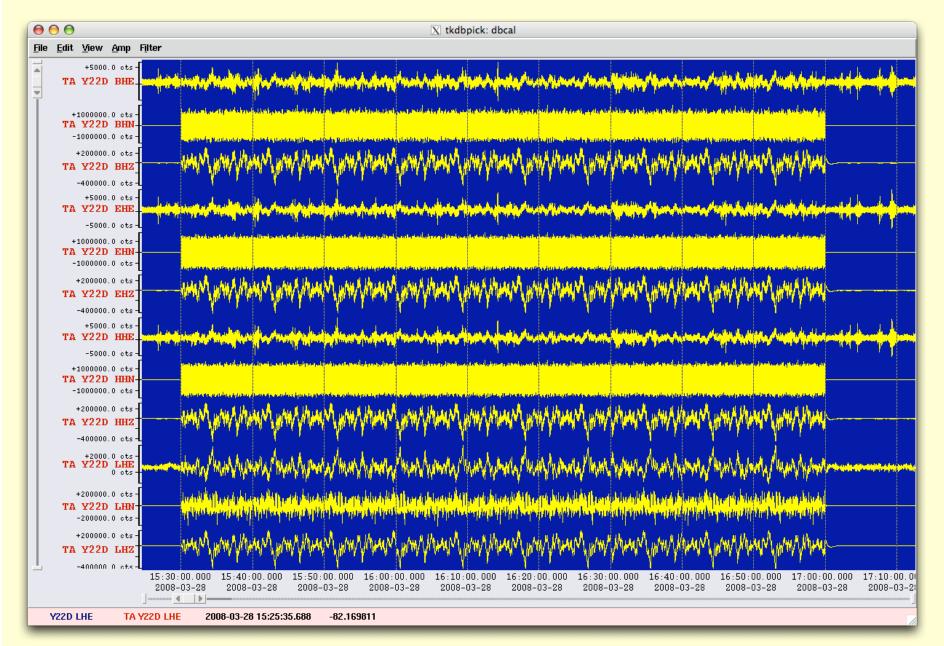
- Q330 calibration command can be done either using the Antelope dlcmd mechanism, or any other extra-Antelope mechanism, such as willard
- As the calibration sequence runs on the Q330, special data markers are generated and inserted into the waveform data stream.
- **q3302orb** looks for these calibration data markers and generates special database ORB packets, using the new **dlcalwf** relation, for each data channel that contains calibration waveforms (either sensor or monitor)
- The calibration waveforms and the **dlcalwf** relation ORB packets flow through the Antelope real-time system and eventually are stored in one or more archive databases.
- Post analysis is accomplished with the new **dbcalibrate** program which reads all of its input and writes all of its output from/to archive databases
- Calibration results can be displayed and hard copy Postscript can be generated by the new **displayscal** script
- Note the decoupling of command, capture and analysis functions

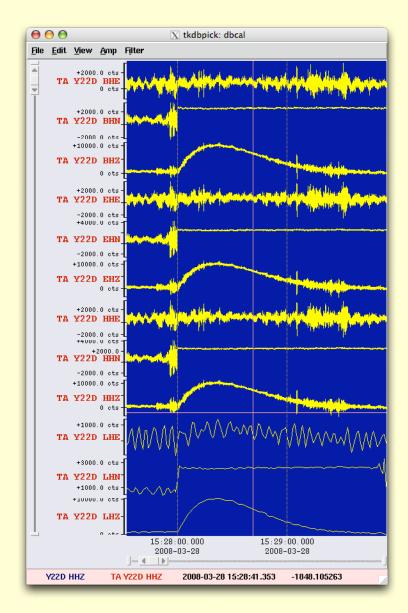
000												dlmon												
ile Views	Windows									<u>+</u>													-	a a-a- a
TA 109C	TA 113A	TA 120A	TA 124A	TA 328A	TA 428A	TA 526A		TA A13A	TA A15A	A17A	TA B08A	TA B10A	TA B11A	TA B14A		TA CI1A	TA D06A	TA D07A	TA D08A	TA D12A	TA G07A	TA G10A	TA G12A	TA H10
TA	TA	TA 021A	TA	TA	TA	TA		naza Char	molo [M	assrecenter.	Calibrata	Dobug	6 6								De	ne 119A	TA	TA
J14A	L22A	UZIA	PIOA	P18A	PZTA	Q194 F									-	end=DT	DATA, seq	-79769	phutos=?	88 plac		_	121A	122/
							2008134	13:44:	44.084:	tadataV9:	: TA Y22D	: DEBUG	D: q330	read data	a: pushi	ng seq=	29369	-20000,	nug tes-z	00, MIAC	K-17, CH			
TA 125A	TA 126A	TA 127A	TA 214A	TA 216A	TA 217A	TA 218A	2008134	13:44:	44.084:	tadataV9:	: TA_Y22D	DEBUG	D: q330_i	read_data	a: poppe	d seq=2	9369 DATA, seq	-20770		40		B27A	TA 425A	TA 426
							2008134	13:44:	44.084:	tadataV9:	: TA_Y22D): DEBUG	D: q330_ D: q330_	read_data	a: reau a: pushi	ng seq=	29370	-29370,	noytes-a	40, MIAC	K-10, UTR			
	TA		TO		TA	TA	2008134	13:44:	44.084:	tadataV9 tadataV9	: TA_Y22D	: DEBUG	D: q330_ D: q720_	read_data	a: poppe	d seq=2	9370 DOTO	-00774		04		TO	TA	TA
TA 427A	TA 527A	528A	626A	627A	628A	TA A05A	2008134	13:44:	44.640:	tadataV9:	: TA Y22D	: DEBUG	D: q330_ D: q330	read_data	a: reau a: pushi	ng ser=	DATA, seq	-29371,	nbytes-z	64, MIaC	K−19, Cra	B16A	TA B17A	Bi
							2008134	13:44:	44.640:	tadataV9	: TA_Y22D	: DEBUG	D: q330_	read_data	a: poppe	d seg (00	🔬 Massre	center T	A_Y2				-
TA C06A	TA C08A	TA	TA	TA	ТА	TA C14A	2008134	13:44: 13:44:	44.640: 44.640:	tadatav9: tadataV9:	: TA Y22D	: DEBUG	D: q330_ D: q330 ∣	read_data read data	a: read a: pushi	ng ser	xecute Stop	calibration		Done lac	k=∠U, cha	an TA	TA E08A	Те
CO6A	C08A	C09A	CIDA	C12B	CI3A	CI 4A												200010	4:20:00:00			E07A	E08A	EO
							2008134	13:44: 13:44:	48.649: 48.649:	tadataV9 tadataV9	: TA Y22D	: DEBUG	∪: q330_ A: to: 2	read_data 9372 +	a: FITU:	time	duration	5400		_				
TA E10A	TA E11A	TA E12A	TA E13A	TA E14A	TA E15A	TA E16A	2008134	13:44:	52.659:	tadataV9:	: TA Y22D	: DEBUG	D: a330 i	read data	a: ETIM:	time	settling time					TA E184	TA G04A	T/ G(
CIUM	CUIA	CIZA	CIJA	E146	EIJA	CIOM	2008134	13:44: 13:44:	53.098:	tadataV9 tadataV9	: TA_Y22D • TA_Y22D): Setti): Proce	ng debug ssina us	_data to er commar	00 h tea ha	oburr	trailer time	1200		_			0046	
							2008134	13:44:	53.282:	tadataV9:	: TA_Y22D	: Proce:	ssing us	er commar	nd set d	ebug_i	waveform	white						<u> </u>
TA G08A	TA G09A	TA G11A	TA G13A	TA G14A	TA G15A	TA G16A	2008134	13:44:	53.282:	tadataV9: tadataV9:	: TA_Y22D то_y22D	: Setti	ng debug	_control	to 0	obug	period						TA I12A	I II
							2008134	13:44:	53.284:	tadataV9:	TA_Y22D	: Setti	ng debug	_udp to (и зес и)	epug_i	amplitude	1						
То	TA	TA	TA	TA	TA	TA	2008134	13:44:	53.287:	tadataV9: tadataV9:	: TA Y22D	: Proce:	ssing us	er commar	nd set d		sensors			_		ТА	TA	
TA I14A	iii sa	ii ĜA	iiża	lii8A	JÖ8A	J Ö9A	7	13:44:	JJ.20/+	tauatava	• IH_122L	· Setti	ng debug	_аск со с		m	onitor channe	IS 0x2	_			K16A	KI7A	<mark>κ</mark> ί
•																				-				
TA	TA	TA L10A	TA	TA	TA	TA L14A	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA M14A	TA	TA	TA	TA	TA	Te
K19A	K20A	LIUA	LIIA	L12A	L13A	L14A	LISA	L16A		LIBA	LISA	LZUA		MIUA	M11A	M124	M13A	M14A	MISA	МТБА	M17A	MIBA	M19A	M
TA M21A	TA M22A	TA MSTX	TA N10A	TA N11A	TA N12A	TA N13A	TA N14A	TA N15A	TA N16A	TA N17A	TA N18A	TA N19A	TA N20A	TA N21A	TA N22A	TA		TA 012A	TA 013A	TA 015A	TA 016A	TA 017A	TA 018A	
										_								- - - - - - - - - - -					0.011	
			Ta			TA		TA				TA			TA								TA	
TA O20A	TA P11A	TA P12A	P13A	P14A	P15A	P16A	P17A	P19A	P20A	TA Q10A		Q12A	TA Q13A	TA Q14A	TA Q15A	Q16A	Q18A	Q20A	Q21A	Q22A	R10A	B11A	R12A	R1
	•											•												•
TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	Te
TA R14A	R15A	R16A	ŘÍ7A	R18A	RZOA	TA R21A	STOA	ST1A	TA S12A	TA S13A	ST4A	TA S17A	S18A	TA S19A	SZ1A	ŤÏIA	ŤÏŻA	ŤÏ 3A	ŤÎ4A	Ťİ5A	Ť16A	TIZA	T18A	Ϊ
TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA	
T22A	U10A	UIIA	U12A	Ú13A	U14A	U15A	U16A	U17A	U18A	UT9A	UZUA	V11A	VIZA	VI4A	V15A	V17A	V18A	V19A	V20A	VZZA	VZ3A	WIZA	WIJA	/ W
TA W15A	TA W16A		TA W18A	TA W19A			TA W22A			TA W25A	TA X14A	TA X15A	TA X16A	TA X17A	TA X18A	TA X19A	TA X20A	TA X21A	TA X23A	TA X24A	TA X25A	TA X26A	TA X27A	Yi
										Lori							- Lori							
			TA			TA		Ta							Te									
Y13A	TA Y14A	Y15A	TA Y16A	TA Y17A	TA Y18A	TA Y19A	TA Y20A	TA Y21A	YZZA	YZ2D	TA Y23A	TA Y24A	Y25A	TA Y26A	Y27A	TA Z13A	TA Z14A	Z15A	TA Z16A	TA Z17A	Z18A	Z19A	TA 720A	TA ZZ
																								4

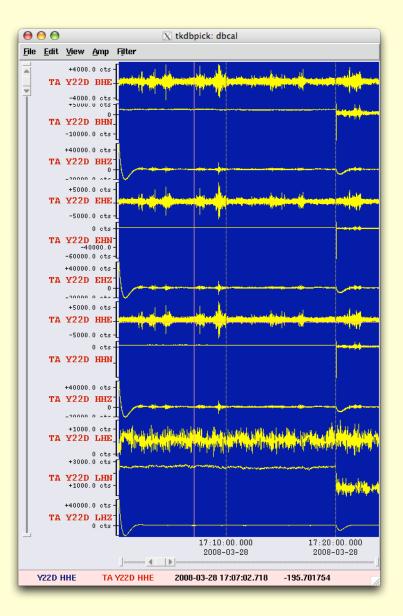
May 2008

	. Application	s Edit	Window	Help			Ì	9 19 1) હ	C 🕄	Laker Mer	2 2	2% 2%	a a second second second	3%	* ?	•) •	Tue 7	:51:46 A	AM 👤	≜ Q
000								1. Contraction of the second sec	🔇 dlmon												
File Views	Windows							Ŧ													a ata: ata
A TA 109C	TA TA 113A 120A	TA 124A	TA 328A	TA 526A	TA TA A13A	A15A A17	A BO8A	TA B10A	TA B11A	TA B14A	CO7A	TA C11A	TA D06A	TA D07A	TA D08A	TA D12A	TA G07A	TA G10A	TA G12A	TA H10A	TA J14A
TA L22A	TA TA O21A P10A		TA P21A	TA Q19A	R Execute Stop ca time	Massrecenter	A_Y2 A 21A Done	TA X13A	TA X22A	TA Y18A	TA Z25A	TA 112A	TA 114A	TA 115A	ТА 116А	та 117а	TA 118A	ТА 119А	ТА 121А	TA 122A	TA 125A
TA 126A	TA 127A 214A	TA 216A	7A 217A	TA 218A	duration settling time	5400 600	23A	TA 224A	TA 225A	TA 226A	TA 227A	TA 318A	TA 319A	TA 320A	TA 324A	TA 325A	TA 326A	TA 327A	TA 425A	TA 426A	TA 427A
TA 428A	TA 527A 528A	TA 626A	TA 627A	TA 628A	trailer time	1200 white		TA A11A		TA A14A	TA A16A	TA A18A	TA B06A	TA B07A	TA B09A	TA B12A	TA B13A	TA B15A	TA B16A	TA B17A	TA B18A
			C12B	TA C13A	amplitude C sensors monitor channels	1 0x2		TA D09A	TA D10A	TA D11A	TA D13A	TA D14A	TA D15A	TA D16A	TA D17A	TA D18A	TA E03A	TA E06A	TA E07A	TA E08A	TA E09A
E10A	TA E11A E12A	E13A	E14A	TA E15A	TA TA E17A	TA E18A F03A	F04A	F07A	TA F08A	TA F09A	TA F10A	Fi 1A	TA F12A	TA F13A	TA F14A	TA F15A	TA F16A	TA F17A	TA F18A	TA G04A	TA G06A
		TA G13A	TA G14A	TA G15A	G16A G17A	TA G18A H04	A HOBA	TA H09A		TA H12A	TA H13A	TA H14A	TA H15A	TA H16A	TA H17A	TA 107A	TA 109A	TA			TA 113A
		Massrecent	er Calibral	te Debug	Start Stop Dicfg	Antofg			. I <u>A_</u> 122	Dilogs											Done
200813 200813 200813 200813 200813 200813 200813 200813 200813 200813 200813 200813 200813 200813 200813 200813 200813 200813 200813	$\begin{array}{cccccccccccccccccccccccccccccccccccc$: tadata) : tadata)	9/9: Tri Y22 9/9: Thi Y22 9/	D: Settj D: Proce D: Settj D: Proce D: Settj D: Proce D: Settj D: Proce D: D: D: D: D: D: D: D: D: D: D: D: D: D: D	wa amp du settlir calibration_ traile sensor_channel_ monitor_channel_ frequency_c	. to 0 nd set debug_ 0 nd set debug_ 0 nd set debug_ 0 nd calibrate md with follo g_time = 26400 yeform = 0x000 ilitude = 1 (2 ration = 54000 g_time = 6000 bitmap = 0x000 r_time = 1200 bitmap = 0x000 bitmap = 0x000 bitmap = 0x000 bitmap = 1 (1) upling = RESI nd start	udp 0 ack 0 ack 0 -time 2008 uing param 24000 (200 22 (white) 5500V) (sec) (sec) 35 (AB) (sec) 38 02 2000Hz)	is: 18134:20:1		ration 54	400 -set1	tling_tim	ne 600 -t	railer_t	ime 1200	∙ –wavefo	n∽m white	a −ampli	tude 1 -ı	wonitor_c)A chann A A
											_						_		_		A

May 2008


0) 🖯	0						X dbcal dl	colut									
									caiwi									
F	_	<u>v</u> iew <u>o</u> p	itions <u>G</u> r	aphics														Help
ok	X																	- →
0	snet	fsta	fchan I	oc	time	model	ssident	dicalseq	dicaltype	dicaleri	dicalinput	dicalchanbm	phchan	samprate	dicalamp	dicalfreq	dicalsettle	dicaltraile
	TA	TCHZ	LHZ	11/13/2007 (31	7) 17:00:55.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:00:55	white	ok	s	0x3F	0	1.0000000	5.00000000	1.0000	100.0000	100.0000
	TA	TCHZ	LHN	11/13/2007 (31	7) 17:00:55.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:00:55	white	ok	d	0x3F	1	1.0000000	5.00000000	1.0000	100.0000	100.0000
	TA	TCHZ	LHE	11/13/2007 (31	7) 17:00:55.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:00:55	white	ok	s	0×3F	2	1.0000000	5.00000000	1.0000	100.0000	100.0000
	TA	TCHZ	BHZ	11/13/2007 (31	7) 17:00:55.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:00:55	white	ok	s	0×3F	0	40.0000000	5.00000000	1.0000	100.0000	100.0000
	TA	TCHZ	BHN	11/13/2007 (31	7) 17:00:55.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:00:55	white	ok	d	0x3F	1	40.0000000	5.00000000	1.0000	100.0000	100.0000
	TA	TCHZ	BHE	11/13/2007 (31	7) 17:00:55.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:00:55	white	ok	s	0×3F	2	40.0000000	5.00000000	1.0000	100.0000	100.0000
	TA	TCHZ	HHZ	11/13/2007 (31	7) 17:00:55.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:00:55	white	ok	s	0×3F	0	100.0000000	5.00000000	1.0000	100.0000	100.0000
	TA	TCHZ	HHN	11/13/2007 (31	7) 17:00:55.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:00:55	white	ok	d	0x3F	1	100.0000000	5.00000000	1.0000	100.0000	100.0000
	TA	TCHZ	HHE	11/13/2007 (31	7) 17:00:55.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:00:55	white	ok	s	0×3F	2	100.0000000	5.00000000	1.0000	100.0000	100.0000
	TA	TCHZ	LHZ	11/13/2007 (31	7) 17:40:00.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:40:00	white	ok	s	0x3F	0	1.0000000	2.50000000	1.0000	300.0000	300,0000
	TA	TCHZ	LHN	11/13/2007 (31	7) 17:40:00.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:40:00	white	ok	d	0x3F	1	1.0000000	2.50000000	1.0000	300.0000	300,0000
	TA	TCHZ	LHE	11/13/2007 (31	7) 17:40:00.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:40:00	white	ok	s	0x3F	2	1.0000000	2.50000000	1.0000	300.0000	300,0000
	TA	TCHZ	BHZ	11/13/2007 (31	7) 17:40:00.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:40:00	white	ok	s	0×3F	0	40.0000000	2.50000000	1.0000	300.0000	300,0000
	TA	TCHZ	BHN	11/13/2007 (31	7) 17:40:00.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:40:00	white	ok	d	0x3F	1	40.0000000	2.50000000	1.0000	300.0000	300,0000
	TA	TCHZ	BHE	11/13/2007 (31	7) 17:40:00.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:40:00	white	ok	s	0x3F	2	40.0000000	2.50000000	1.0000	300.0000	300,0000
	TA	TCHZ	HHZ	11/13/2007 (31	7) 17:40:00.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:40:00	white	ok	s	0×3F	0	100.0000000	2.50000000	1.0000	300.0000	300,0000
	TA	TCHZ	HHN	11/13/2007 (31	7) 17:40:00.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:40:00	white	ok	d	0x3F	1	100.0000000	2.50000000	1.0000	300.0000	300,0000
	TA	TCHZ	HHE	11/13/2007 (31	7) 17:40:00.00000	q330	0100000EA996551D	TA_TCHZ-2007317:17:40:00	white	ok	s	0x3F	2	100.0000000	2.50000000	1.0000	300.0000	300,0000
	TA	TCHZ	LHZ	11/14/2007 (31	8) 21:12:34.00000	q330	0100000EA996551D	TA_TCHZ-2007318: 21: 12: 34	step	ok	s	0x3F	0	1.0000000	2.50000000	1.0000	100.0000	100.0000
	TA	TCHZ	LHN	11/14/2007 (31	8) 21:12:34.00000	q330	0100000EA996551D	TA_TCHZ-2007318:21:12:34	step	ok	d	0x3F	1	1.0000000	2.50000000	1.0000	100.0000	100.0000
	TA	TCHZ	LHE	11/14/2007 (31	8) 21:12:34.00000	q330	0100000EA996551D	TA_TCHZ-2007318: 21: 12: 34	step	ok	s	0×3F	2	1.0000000	2.50000000	1.0000	100.0000	100.0000
	TA	TCHZ	BHZ	11/14/2007 (31	8) 21:12:34.00000	q330	0100000EA996551D	TA_TCHZ-2007318: 21: 12: 34	step	ok	s	0x3F	0	40.0000000	2.50000000	1.0000	100.0000	100.0000
	TA	TCHZ	BHN	11/14/2007 (31	8) 21:12:34.00000	q330	0100000EA996551D	TA_TCHZ-2007318:21:12:34	step	ok	d	0×3F	1	40.0000000	2.50000000	1.0000	100.0000	100.0000
	TA	TCHZ	BHE	11/14/2007 (31	8) 21:12:34.00000	q330	0100000EA996551D	TA_TCHZ-2007318:21:12:34	step	ok	s	0×3F	2	40.0000000	2.50000000	1.0000	100.0000	100.0000
17	TA	TCHZ	HHZ	11/14/2007 (31	8) 21:12:34.00000	q330	0100000EA996551D	TA_TCHZ-2007318:21:12:34	step	ok	s	0×3F	0	100.0000000	2.50000000	1.0000	100.0000	100.0000
521														•				(
	-							Dismiss										
_	_	_	_			_		Distance		_			_					_


- **q3302orb** automatically generates special database ORB packets, using the new **dlcalwf** relation, for each data channel that contains calibration waveforms (either sensor or monitor)
- The calibration waveforms and the **dlcalwf** relation ORB packets flow through the Antelope real-time system and eventually are stored in one or more archive databases.
- The **dlcalwf** rows act as markers in the archive database to identify calibration waveforms and their associated parameters



BRTT

May 2008

BRTT

Sensor calibration analysis using **dbcalibrate**

- **dbcalibrate** operates strictly by computing smoothed spectral ratios in amplitude and phase, including statistics, between pairs of waveforms that can span different time periods, stations and channels
- An estimate of sensor response (as seen through the calibration circuitry and mechanics) can be obtained by ratioing a recorded sensor calibration output and a direct loopback signal from the datalogger calibration signal DAC back through the datalogger ADC (Q330 monitor channel)
- Spectral comparisons of like calibration output signals across different time period and/or different stations and/or different channels can also be computed to produce spectra of changes (should be flat and zero phase if there are no changes)
- Noise to calibration signal spectral power ratios can also be generated to determine valid comparison spectra frequency ranges
- Note that **dbcalibrate** can only compare two recorded waveforms and not a recorded waveform with an internally generated theoretical waveform

Sensor calibration analysis using **dbcalibrate**

- **dbcalibrate** produces its output spectra only as frequency, amplitude, phase, amplitude error, phase error tables no pole and zero fitting or "post spectra" smoothing are performed
- Spectral ratios are computed by dividing the cross correlation spectrum between the numerator (subject) and denominator (reference) waveforms by the autocorrelation spectrum of the denominator waveform
- Spectral smoothing and statistics determination are computed through accumulations of the frequency domain cross correlation matrix elements from a set of tapered moving time windows through the waveform data
- In order to reduce the size of the resulting response functions (1000 sec to 100 hz response would produce a spectrum with 200,000 points) and to provide many short time windows for the higher frequencies vs. fewer longer time windows for the lower frequencies, we do the analysis in multiple frequency bands
- Try **man dbcalibrate** for more detailed information

Example run of **dbcalibrate**

```
2615 ruper% dbcalibrate -v -outrecno \
```

```
-dlcalwf_sifter 'fchan =~ /EH./ && (fchan == "EHZ" || dlcalinput == "d")' \
-out dbcal dbcal TA_Y22D-2008088:15:30:00
```

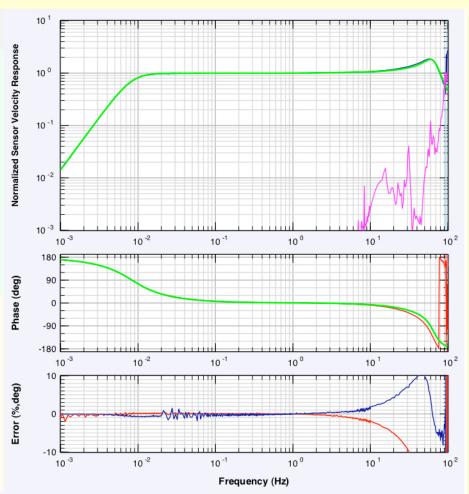
```
dbcalibrate: Processing calibration sequence TA Y22D-2008088:15:30:00
dbcalibrate: for q330 sn 0100000A27B8E96F at 3/28/2008 15:30:00.000:
dbcalibrate:
                           type = white
dbcalibrate:
                       duration = 5400.0000 Seconds
dbcalibrate:
                   disposition = ok
dbcalibrate:
                channel bitmap = 0x7
dbcalibrate:
                      amplitude = 2.5000 Volts
dbcalibrate:
                      frequency = 1.0000
dbcalibrate:
                   settle time = 120.0000 Seconds
dbcalibrate:
                  trailer time = 1200.0000 Seconds
dbcalibrate:
                  found 1 sensors attached to datalogger:
dbcalibrate:
                       A -> sts2 g3:30716
dbcalibrate:
                           type=V, drive=c, active=yes, calgen=0.0300238cm/V, cal2rsp=1, sngen=1500V/cm/s, calper=1.000
dbcalibrate:
                  found 2 channels in this sequence:
dbcalibrate:
                       TA Y22D EHN -> Y22D:EHN, sensor=sts2 g3:30716, nomresp=yes, input=d, phchan=1, samprate=200.0
dbcalibrate:
                       TA Y22D EHZ -> Y22D:EHZ, sensor=sts2 g3:30716, nomresp=yes, input=s, phchan=0, samprate=200.0
dbcalibrate:
                  found 1 samplerate groups in this sequence:
dbcalibrate:
                       for samplerate 200.0, found 1 channels to process:
dbcalibrate:
                           reference trace at TA Y22D EHN -> Y22D:EHN, data samples ok
dbcalibrate:
                           TA Y22D EHZ -> Y22D:EHZ, timing ok, time window ok, data samples ok
dbcalibrate: specdiv: Total process window of 6430.000 seconds starting at 2008088:15:29:30.000:
dbcalibrate: specdiv: Processing 4 frequency bands to produce 1150 frequency points:
dbcalibrate: specdiv: For band 0, Processing 1 windows of 10485.760 seconds with fmax=100.000 and df=0.000095
dbcalibrate: specdiv: For band 1, Processing 18 windows of 655.360 seconds with fmax=100.000 and df=0.001526
dbcalibrate: specdiv: For band 2, Processing 626 windows of 20.480 seconds with fmax=100.000 and df=0.048828
dbcalibrate: specdiv: For band 3, Processing 10045 windows of 1.280 seconds with fmax=100.000 and df=0.781250
0
```

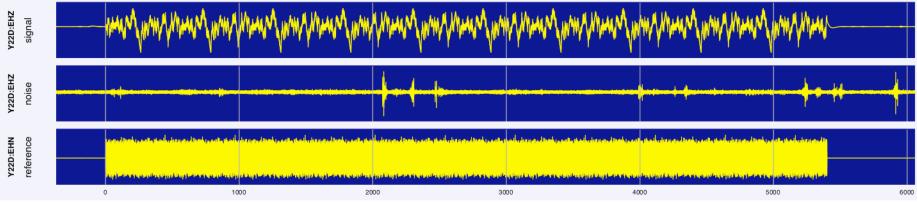
2616 ruper%

- **dbcalibrate** disposes its output into a new database relation **sensorcal** and a set of ASCII response files
- Response files include the spectral ratio itself, a nominal response and amplitude and phase differences (errors?) between the ratio and the nominal response
- Also computed as an absolute gain term that is used to infer the effective sensor generator constant, although it is unclear how this relates to the true sensor generator constant

() 🖯	0					🗴 dbcal sensorc	al					
File	<u>E</u> dit (<u>v</u> iew <u>o</u>	ptions	<u>G</u> raphic	\$								<u>H</u> elp
ok	X												← →
		Labord		أسعادهما	* • * • • •		*i		(dississes	أحسبوا معالم		
0	sta			rchan	tstart	tend	time	rtime	dicalseq	dicalseqr	dicaltype		
	Y22D			EHN	3/28/2008 (088) 15:29:30.00000		3/28/2008 (088) 15:30:00.00000	3/28/2008 (088) 15:30:00.00000		TA_Y22D-2008088:15:30:00		ratio	no
	Y22D			EHZ	3/29/2008 (089) 1:59:30.00000		3/29/2008 (089) 2:00:00.00000	3/28/2008 (088) 15:30:00.00000				power	·
	Y22D			EHN		3/28/2008 (088) 17:16:39.44000		3/28/2008 (088) 15:30:00.00000		TA_Y22D-2008088:15:30:00		ratio	
	Y22D	EHE		EHE	3/29/2008 (089) 1:59:30.00000		3/29/2008 (089) 2:00:00.00000	3/28/2008 (088) 15:30:00.00000		TA_Y22D-2008088:15:30:00		power	
	Y22D	EHZ		EHE	3/28/2008 (088) 19:59:30.00000		3/28/2008 (088) 20:00:00.00000	3/28/2008 (088) 20:00:00.00000		TA_Y22D-2008088: 20: 00: 00		ratio	
	Y22D	EHZ		EHZ	3/29/2008 (089) 1:59:30.00000		3/29/2008 (089) 2:00:00.00000	3/28/2008 (088) 20:00:00.00000	_	TA_Y22D-2008088: 20: 00: 00		power	
	Y22D			EHE		3/28/2008 (088) 21:46:39.44000		3/28/2008 (088) 20:00:00.00000	-			ratio	
	Y22D			EHN		3/29/2008 (089) 3:30:29.84000		3/28/2008 (088) 20:00:00.00000				power	
	Y22D	EHZ		EHZ	3/28/2008 (088) 19:59:30.00000		3/28/2008 (088) 20:00:00.00000	3/28/2008 (088) 15:30:00.00000		TA_Y22D-2008088:15:30:00		ratio	
	TETH			EHN	3/28/2008 (088) 15:29:30.00000		3/28/2008 (088) 15:30:00.00000	3/28/2008 (088) 15:30:00.00000		TA_TETH-2008088: 15: 30: 00		ratio	
	TETH			EHZ	3/29/2008 (089) 1:59:30.00000		3/29/2008 (089) 2:00:00.00000	3/28/2008 (088) 15:30:00.00000		TA_TETH-2008088: 15: 30: 00		power	
	TETH			EHN		3/28/2008 (088) 17:16:39.44000		3/28/2008 (088) 15:30:00.00000				ratio	
	TETH		TETH			3/29/2008 (089) 3:30:29.84000		3/28/2008 (088) 15:30:00.00000				power	
	TETH			EHE	3/28/2008 (088) 19:59:30.00000		3/28/2008 (088) 20:00:00.00000	3/28/2008 (088) 20:00:00.00000		TA_TETH-2008088: 20: 00: 00		ratio	
	TETH			EHZ	3/29/2008 (089) 1:59:30.00000	3/29/2008 (089) 3:30:29.84000		3/28/2008 (088) 20:00:00.00000		TA_TETH-2008088: 20: 00: 00		power	
	TETH			EHE	3/28/2008 (088) 19:59:30.00000			3/28/2008 (088) 20:00:00.00000		TA_TETH-2008088: 20: 00: 00		ratio	
	TETH			EHN			3/29/2008 (089) 2:00:00.00000	3/28/2008 (088) 20:00:00.00000		TA_TETH-2008088: 20: 00: 00		power	
	TETH		TETH		3/28/2008 (088) 19:59:30.00000			3/28/2008 (088) 15:30:00.00000	-	-		ratio	
	N16A			EHN	3/28/2008 (088) 18:59:30.00000	3/28/2008 (088) 20:46:39.44000		3/28/2008 (088) 19:00:00.00000		TA_N16A-2008088:19:00:00		ratio	
	N16A			EHZ	3/29/2008 (089) 1:59:30.00000	3/29/2008 (089) 3: 30: 29, 84000		3/28/2008 (088) 19:00:00.00000		TA_N16A-2008088:19:00:00		power	II.
	N16A			EHN	3/28/2008 (088) 18:59:30.00000		3/28/2008 (088) 19:00:00.00000	3/28/2008 (088) 19:00:00.00000		TA_N16A-2008088: 19: 00: 00		ratio	
a second		EHE	N16A	EHE	3/29/2008 (089) 1:59:30.00000	3/29/2008 (089) 3:30:29.84000	3/29/2008 (089) 2:00:00.00000	3/28/2008 (088) 19:00:00.00000	TH_M16A-2008088:19:00:00	TA_N16A-2008088:19:00:00	white	power	yes
22	M												
							Dismiss						


```
2628 ruper% more white Y22D_EHZ_08088153000
##
## TA Y22D-2008088:15:30:00 white sta=Y22D chan=EHZ time= 3/28/2008 15:30:00.000 duration=5400.000 sec
## Compared to:
## TA Y22D-2008088:15:30:00 white sta=Y22D chan=EHN time= 3/28/2008 15:30:00.000 duration=5400.000 sec
##
## response analysis parameters:
        bands[0]{fmax} = 0.02
#
#
        {bands}[0]{fmin} = 0.000001
#
        \{bands\}[0]\{nwindows\} = 1
#
        {bands}[0]{overlap_percent} = 0.0
#
        {bands}[0]{taper_percent} = 0.0
#
        \{bands\}[1]\{fmax\} = 1.0
#
       {bands}[1]{fmin} = 0.0025
 . . .
#
       \{tlag\} = 1000.0
       \{t = 30.0\}
#
##
                     Amplitude
                                                                  AmpUncertLow PhaseUncertHigh PhaseUncertLow
##Frequency(hz)
                                    Phase(deg)
                                                 AmpUncertHigh
##
measured 1 complete-white fap2 danny/dbcalibrate
1150
9.53674316e-05 9.35422577e-05 1.34816925e+02 9.35422577e-05 9.35422577e-05 1.34816925e+02 1.34816925e+02
1.90734863e-04 2.66779796e-04 1.29471237e+02 2.66779796e-04 2.66779796e-04 1.29471237e+02 1.29471237e+02
2.86102295e-04 1.06819987e-03 1.77127350e+02 1.06819987e-03 1.06819987e-03 1.77127350e+02 1.77127350e+02
3.81469727e-04 1.50873035e-03 1.69980560e+02 1.50873035e-03 1.50873035e-03 1.69980560e+02 1.69980560e+02
4.76837158e-04 3.26205418e-03 1.72308044e+02 3.26205418e-03 3.26205418e-03 1.72308044e+02 1.72308044e+02
  . . .
```

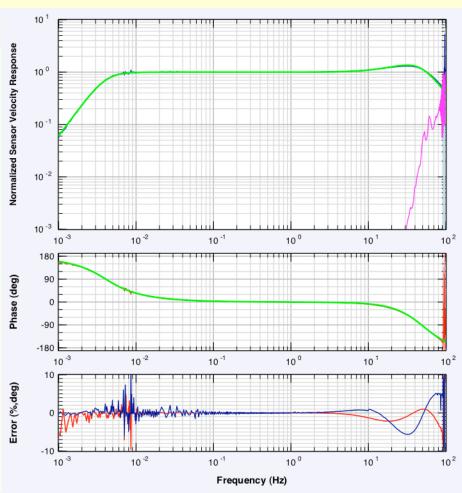


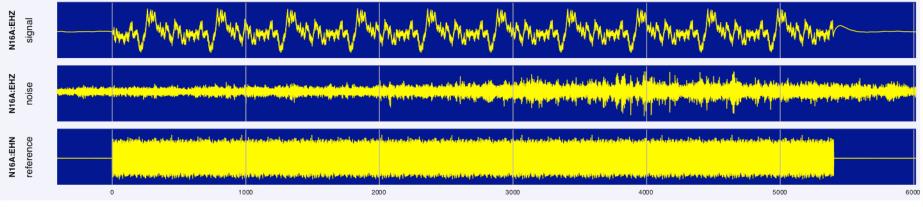

White noise sensor calibration processing results Processed by dbcalbrt:danny:redgarden at 2008134:12:49:37.095

Channel: TA_Y22D_EHZ		Time: 2008088:15:30:	00.000	Sequ TA_	ence: Y22D-200808	8:15:30:00
Dimodel: q330		Diserial: 0100000A27B8	E96F	Snmo sts2		Snserial: 30716
Noise Channel: TA_Y22D_EHZ		Noise Time: 2008089:02:00:	00.000		Sequence: Y22D-200808	8:15:30:00
Noise DImodel: q330		Noise Diserial: 0100000A27B8	E96F	Noise sts2	Snmodel: g3	Noise Snserial: 30716
Ref Channel: TA_Y22D_EHN		Ref Time: 2008088:15:30:	00.000		equence: Y22D-200808	8:15:30:00
Ref Dlmodel: q330		Ref Diserial: 0100000A27B8	E96F	Ref S sts2	nmodel: g3	Ref Snserial: 30716
Cal mode: mon	Cal Wa	aveform:	Cal Duration: 1:30 hours		Samplerate: 200	Cal Amplitude: 2.500 V
Cal processing: ratio		ttle Time: minutes	Cal Trailer Time: 20:00 minutes			

Sngen:	Nominal Sngen:	Norm Freq:	Noise Relative To:
1517.30 V/m/s	1500.00 V/m/s	1.000 Hz	TA_Y22D-2008088:15:30:00
Processing Parameters:			
{bands}{0}{fmax} = 0.02	{bands}[2]{nwir	ndows} = 0	
{bands}{0}{fmin} = 0.000001	{bands}[2]{ove	rlap_percent} = 50.0	
{bands}[0]{nwindows} = 1	{bands}[2](tape	er_percent} = 50.0	
{bands}[0]{overlap_percent} = 0.0	{bands}[3]{fma	x} = 200.0	
{bands}{0}{taper_percent} = 0.0	{bands}[3]{fmin	i} = 1.00	
{bands}[1]{fmax} = 1.0	{bands}[3]{nwir	ndows} = 0	
{bands}[1](fmin} = 0.0025	{bands}[3](ove	rlap_percent} = 50.0	
{bands}[1]{nwindows} = 0	{bands}[3]{tape	er_percent} = 50.0	
{bands}[1]{overlap_percent} = 50.	.0 {tlag} = 1000.0		
{bands}[1](taper_percent) = 25.0	{tlead} = 30.0		
{bands}[2]{fmax} = 10.0			

{bands}[2]{fmin} = 0.05

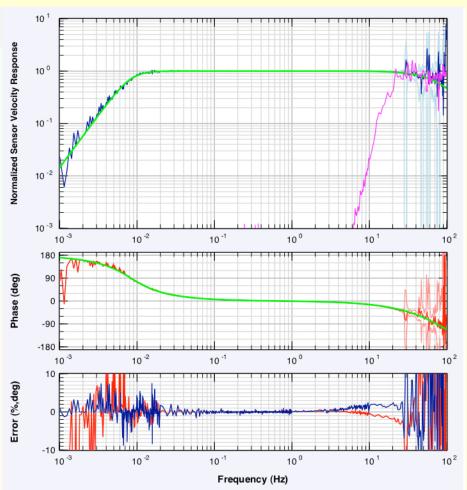


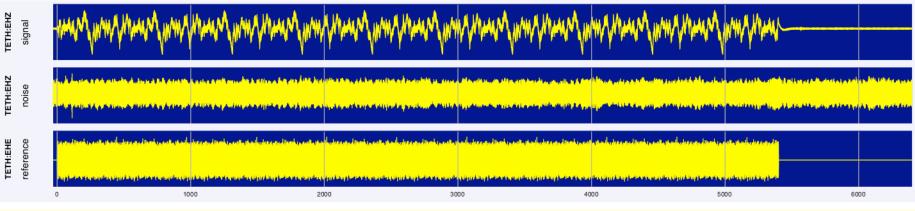

White noise sensor calibration processing results Processed by dbcalbrt:danny:redgarden at 2008134:12:51:30.613

Channel: TA_N16A_EHZ		Time: 2008088:19:00	:00.000		ence: N16A-20080	88:19:00:00
DImodel: q330		Diserial: 010000044D88	9446	Snmo trilli	odel: um_240	Snserial: 252
Noise Channel: TA_N16A_EHZ		Noise Time: 2008089:02:00	:00.000		Sequence: N16A-20080	88:19:00:00
Noise Dlmodel: q330		Noise Diserial: 010000044D88	9446		Snmodel: um_240	Noise Snserial: 252
Ref Channel: TA_N16A_EHN		Ref Time: 2008088:19:00	:00.000		equence: N16A-20080	88:19:00:00
Ref DImodel: q330		Ref Diserial: 010000044D88	9446		inmodel: um_240	Ref Snserial: 252
Cal mode: mon	Cal W whit	/aveform: e	Cal Duration: 1:30 hours		Samplerate: 200	Cal Amplitude: 0.312 V
Cal processing: ratio		ettle Time: 0 minutes	Cal Trailer Time: 20:00 minutes			

Sngen:	Nominal Sngen:	Norm Freq:	Noise Relative To:
1500.70 V/m/s	1500.00 V/m/s	1.000 Hz	TA_N16A-2008088:19:00:00
Processing Parameters:			
{bands}{0}{fmax} = 0.02	{bands}[2]{nwir	ndows} = 0	
{bands}{0}{fmin} = 0.000001	{bands}[2]{ove	rlap_percent} = 50.0	
{bands}[0]{nwindows} = 1	{bands}[2](tape	er_percent) = 50.0	
(bands)[0](overlap_percent) = 0.0	{bands}[3]{fma	x} = 200.0	
{bands}{0}{taper_percent} = 0.0	{bands}{3}{fmin	n} = 1.00	
(bands)[1](fmax) = 1.0	{bands}[3]{nwir	ndows} = 0	
(bands)[1](fmin) = 0.0025	{bands}[3](ove	rlap_percent} = 50.0	
{bands}[1]{nwindows} = 0	{bands}[3]{tape	er_percent} = 50.0	
{bands}[1]{overlap_percent} = 50.	.0 {tlag} = 1000.0		
{bands}[1]{taper_percent} = 25.0	{tlead} = 30.0		
{bands}[2]{fmax} = 10.0			

{bands}[2]{fmin} = 0.05

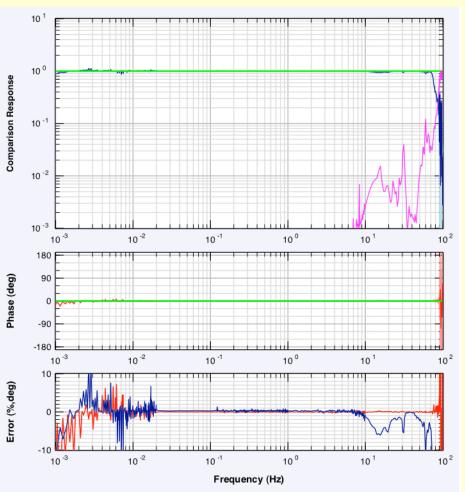


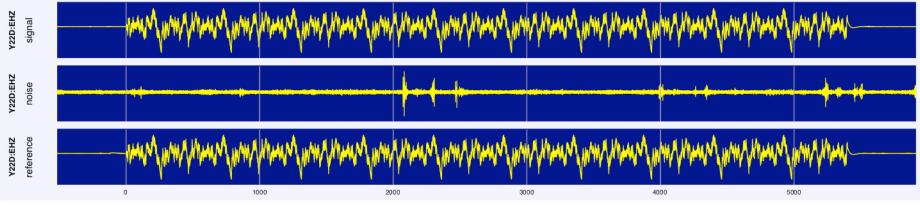


White noise sensor calibration processing results Processed by dbcalbrt:danny:redgarden at 2008134:12:50:59.008

Channel: TA_TETH_EHZ		Time: 2008088:20:00:	:00.000	Sequ	ence: TETH-200808	88:20:00:00
Dimodel: q330		Diserial: 0100000EBDCF	FB1B8	Snmo cmg		Snserial: 0001
Noise Channel: TA_TETH_EHZ		Noise Time: 2008089:02:00:	:00.000		Sequence:	88:20:00:00
Noise DImodel: q330		Noise Diserial: 0100000EBDCF	FB1B8	Noise cmg	Snmodel: 3t	Noise Snserial: 0001
Ref Channel: TA_TETH_EHE		Ref Time: 2008088:20:00:	:00.000		equence: TETH-200808	88:20:00:00
Ref DImodel: q330		Ref Diserial: 0100000EBDCF	FB1B8	Ref S cmg	nmodel: 3t	Ref Snserial: 0001
Cal mode: mon	Cal W whit	/aveform: e	Cal Duration: 1:30 hours		Samplerate: 200	Cal Amplitude: 2.500 V
Cal processing: ratio		ettle Time: 0 minutes	Cal Trailer Time: 20:00 minutes			

•	Nominal Sngen:	Norm Freq:	Noise Relative To:
1501.90 V/m/s	1500.00 V/m/s	1.000 Hz	TA_TETH-2008088:20:00:00
Processing Parameters:			
{bands}[0]{fmax} = 0.02	{bands}[2]{nwi	indows} = 0	
{bands}{0}{fmin} = 0.000001	{bands}[2]{ove	rlap_percent} = 50.0	
{bands}[0]{nwindows} = 1	{bands}[2]{tap	er_percent} = 50.0	
{bands}[0]{overlap_percent} = 0.0	{bands}[3]{fma	ax} = 200.0	
{bands}{0}{taper_percent} = 0.0	{bands}[3]{fmir	n} = 1.00	
{bands}[1]{fmax} = 1.0	{bands}[3]{nwi	ndows} = 0	
{bands}[1]{fmin} = 0.0025	{bands}[3](ove	rlap_percent} = 50.0	
{bands}[1]{nwindows} = 0	{bands}[3]{tap	er_percent} = 50.0	
{bands}[1]{overlap_percent} = 50.0	0 {tlag} = 1000.0)	
{bands}[1]{taper_percent} = 25.0	$\{t e ad\} = 30.0$		
{bands}[2]{fmax} = 10.0			
{bands}[2]{fmin} = 0.05			





White noise sensor calibration processing results Processed by dbcalbrt:danny:redgarden at 2008134:12:50:26.979

Channel: TA_Y22D_EHZ		Time: 2008088:20:00:	:00.000		ence: Y22D-200808	8:20:00:00
Dimodel: q330		Diserial: 0100000A27B8	E96F	Snmo sts2		Snserial: 30716
Noise Channel: TA_Y22D_EHZ		Noise Time: 2008089:02:00:	:00.000		Sequence: Y22D-200808	88:15:30:00
Noise DImodel: q330		Noise Diserial: 0100000A27B8	E96F	Noise sts2	Snmodel:	Noise Snserial: 30716
Ref Channel: TA_Y22D_EHZ		Ref Time: 2008088:15:30:	:00.000		equence: Y22D-200808	88:15:30:00
Ref Dlmodel: q330		Ref Diserial: 0100000A27B8	E96F	Ref S sts2	inmodel: _g3	Ref Snserial: 30716
Cal mode: cmp	Cal W whit	/aveform: e	Cal Duration: 1:30 hours		Samplerate: 200	Cal Amplitude: 2.500 V
Cal processing: ratio		ettle Time: 0 minutes	Cal Trailer Time: 20:00 minutes			

Amp Ratio:	Norm Freq:	Noise Relative To:
0.997160	1.000 Hz	TA_Y22D-2008088:15:30:00
Processing Parameters:		
{bands}{0}{fmax} = 0.02	{	(bands)[2]{nwindows} = 0
{bands}{0}{fmin} = 0.000001	{	{bands}[2]{overlap_percent} = 50.0
{bands}[0]{nwindows} = 1	{	(bands)[2](taper_percent) = 50.0
{bands}[0]{overlap_percent} = 0.0	{	(bands)[3]{fmax} = 200.0
{bands}{0}{taper_percent} = 0.0	{	{bands}{3}{fmin} = 1.00
{bands}[1]{fmax} = 1.0	{	{bands}{3}{mwindows} = 0
{bands}[1]{fmin} = 0.0025	{	(bands)[3]{overlap_percent} = 50.0
{bands}[1]{nwindows} = 0	{	(bands)[3]{taper_percent} = 50.0
{bands}[1]{overlap_percent} = 50.0	D {	(tlag) = 1000.0
$bands[1](taper_percent) = 25.0$	{	(tlead) = 30.0
{bands}[2]{fmax} = 10.0		
{bands}[2]{fmin} = 0.05		

